Normal consumer cameras operate very well in day-light, or room ambient lighting conditions. However, when you want to make a snapshot of a fast moving object, exposure-time has to be shortened to obtain a sharp image. This comes with a cost; images are much darker when using a short exposure time. At a certain threshold, the attenuation has to be compensated. This could be done by increasing the light (by using a flash), or by improving the photo-sensitivity of the camera. In high-speed cameras this effect is even stronger.

To get clear images in high-speed cameras, an object has to be illuminated with a high intensity light-source. The higher the frame rates the shorter the exposure time per frame, the higher the intensity of the light-source must be. In many applications increase in illumination is an adequate method to compensate the shorter exposure times. However, in some applications the object itself is emitting light, or is influenced by the light-source. In combustion research, for example, or imaging of dynamic phenomena in fluorescent biological cells, or low intensity PIV, light intensities are too low to record with conventional high-speed cameras. In applications like microfluidics, the heat generated by a powerful light source can have a tremendous effect on liquid flows.

To apply high-speed imaging in the forementioned situations, Lambert Instruments has developed intensified high-speed cameras and high-speed intensifying camera attachments. The special two stage high-speed image intensifiers in these products amplify the input light to a typically 10000 times higher level on the output. This makes it much easier to distinguish an image from the noise. Furthermore, the gating feature of the image intensifier makes it possible to capture even the fastest objects without motion blur.